Read in 2 CSVs from separate folders, merge and export
# join cores & latts & longs for 7 properties
# Note — check if reading data from 30 cm layer or 120 cm layer
for p in range(0, len( property )):
# read in files and correct column headings
cov_df = pd.read_csv(‘C:/Users/MelZeppel/OneDrive — McCosker Contracting Pty Ltd/ML_development/2022_covariates_QGIS/’ + property.iloc[p] + ‘_ML_covariates_2208.csv’)
cov_df = cov_df.rename(columns = {‘core_numbe’:’core_number’})
property_name = cov_df[‘property_n’].iloc[0]
print(property_name)
layer_30 = pd.read_csv(‘C:/Users/MelZeppel/OneDrive — McCosker Contracting Pty Ltd/ML_development/carbon_point_join_files/point_join_’ + property_name + ‘_30_no_nulls.csv’)
# #join and export files
df = cov_df.merge(layer_30, on = ‘core_number’, how = ‘left’)
df = df.rename(columns = {‘cea_name_x’:’cea_name’, ‘sampling_r’:’sampling_round’})
df = df.drop(columns = {‘cea_name_y’})
lower_depth = df[‘lower_depth’].iloc[0].astype(str)
print(df.head() )
# df = df[[‘property_name’, ‘lower_depth’,’cea_name’, ‘strata_name’, ‘sampling_round’, ‘core_number’, ‘actual_latitude’, ‘actual_longitude’, ‘core_carbon_mass’]]
df.to_csv(‘C:/Users/MelZeppel/OneDrive — McCosker Contracting Pty Ltd/ML_development/2022_covariates_QGIS/’ + property.iloc[p] + lower_depth + ‘_ML_covariates_2208.csv’)